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The Radiation of Electromagnetic Power
by Microstrip Configurations

LEO J. VAN

Abstract—A new technique for calculating the radiation losses of
microstrip configurations is presented. The method applies if the
wavelength is large compared to the width of the conducting strip and

the thickness of the dielectric wafer. It is shown that the radiated

power, which is partly carried by “space waves” and partly by

“surface waves,” can he computed in terms of the specific inductance

and the specific capacitance of the transmission line, without making

any assumptions regarding the current distribution in tbe microstrip.
It appears that the fraction of the radiated power carried by surface

waves contains the frequency to a higher power than does the fraction

carried by space waves and is therefore relatively small The
investigated configurations are the infinitely long transmission line
excited by a voltage-slit, the half-wavelength straight resonator, the
frill-wavelength circular resonator, and the quarter-wavelength hair-

pin resonator. It follows that the quality factor of the straight
resonator and the circular resonator are inversely proportional to

the square of the frequency, whereas the quality factor of the hairpin

resonator is inversely proportional to the fourth power of

the frequency.

INTRODUCTION

A RIGOROUS CALCULATION of the power radiated

by microstrip configurations is very complicated. This
is due to the fact that the problem of finding the current

distribution in the conducting strip and in the short-

circuiting posts is a mixed boundary value problem, which

cannot be solved by analytical methods. However, in most

cases of practical interest the wavelength of the propagating

mode is large compared to the width of the conducting

microstrip and to the thickness of the dielectric wafer. In

such cases detailed knowledge of the current distributions is

not required for calculating the radiated power. In fact it can

be shown that, in the long-wavelength limit, only the total

current flowing along the microstrip and in the short-

circuiting posts is relevant for power radiation. These total

currents can be calculated by a simple transmission line

approach, using the concept of the specific capacitance and

the specific inductance of the microstrip. We shall assume in

this paper that the long-wavelength condition is satisfied

and that the specific capacitance C and the specific induc-

tance L are known parameters.

A rather classical situation is met if the dielectric and

magnetic properties of the wafer are not different from those

in the adjacent halfspace. In that case the far-field Hertzian

vector can be obtained from the well-known solution of

Poisson’s equation, which is valid in an unbounded and

uniform medium. However, the dielectric constant of the

wafer is normally many times larger than that in the adjacent
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halfspace and in that case the “uniform medium” approach

is not satisfactory. An approach followed by Lewin [1] and

others [3]–[7] is to account for the larger dielectric constant

of the wafer by introducing “polarization” currents, flowing

from the strip to the ground plane.

The magnitude of these currents is estimated by Lewin

from an approximate electric field configuration under the

strip, together with an “effective” dielectric constant of the

platelet. The Hertzian vector on a hemisphere of infinite

radius is then computed by taking as the source function

the electric currents and the polarization currents in

the platelet and by using the Green’s function of

the unbounded uniform medium. The total radiated power

is next obtained by integrating Poynting’s vector over

the hemisphere of infinite radius. Though we may expect

that this approach will give the correct order of magnitude of

the radiated power, the errors introduced by the simplifying

assumptions seem hard to estimate.

In the approach followed in this paper, use has been made

of the fact that the power radiated by the microstrip

configuration should be equal to the power necessary to

maintain the current density at a stationary value. This

furnished power, in turn, can be found by calculating the

scalar product of the current density and the complex

conjugate of the electric field opposing the current density

and integrating this scalar product over the space coordi-

nates. The time average of the total furnished power is then

obtained by taking the opposite of the real part and dividing

by two. However, in space coordinates this calculation is

very complicated, due to the complicated structure of

Green’s function interrelating the electric field and current

density in an inhomogeneous medium. A much simpler

expression for the delivered power is obtained in terms of the

Fourier transforms of current density and electric field with

respect to the coordinates of the plane of the wafer. The

interrelation between these Fourier transforms is simply

algebraic, because of the translational symmetry of

the dielectric wafer. The so-called impedance dyadic giving

this interrelation is found to be an elementary function of

the wafer parameters. As a result of this Fourier transforma-

tion the calculation of the furnished power can be carried

out without any simplification of the model, the only

assumption being that the long-wavelength condition is

satisfied. In the next section we give a detailed description of
the method.

OUTLINE OF THE METHOD

We denote the x component of the surface current density

in the plane z = 1 byj ~and similarly they component by j2

(see Fig. 1). The current density in the region 0< z <1 is
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Fig. 1. Cross-sectional view of a microstrip transmission line.

assumed to be in the z direction and independent of z. This

constraint has no influence on the power radiation, provided

that the long-wavelength condition is satisfied. We denote

this current density by j~ and we represent the scalars j ~,jz,

and j~ simultaneously by the vector j(x,y).

7
imilarly, let E ~represent the x component of the electric

field in the plane z = 1 and E2 the y component. The avefage

vail e of the z component of the electric field in the region
r

0< z <1 is denoted by E3. We represent El, E2, and E3 by

1

the vector E(x,y). We denote the time average of the power

to e furnished to maintainj stationary by W. B y definition,

W is given by
m

W=–~Re
JJ

EY. jdxdy. (1)

n –m

I (1) the asterisk indicates the complex conjugate value.

We note that the plane z = O does not contribute to W,
bec ause at z = O the x and y components of the electric field

are zero. This is not necessarily the case in the conductive

stri p, in spite of the assumed infinite conductivity, because
an ~xternally applied driving field may be present. The

infi~ite conductivity y then assures that the sum of the electric

and the driving field is zero [2]. In order to evaluate (1) we

intr educe the Fourier transforms E“ and j“ of E and j:

E(x,y) = j~ E“(c@) exp (– icw – i/3y) da d/3
–02

j(x,y) = ~~ j“(o@ q (– ictx – @Y)da dp.
–’x

Application of Parseval’s theorem to (1) then yields

(2)

(3)

ii
I order to eliminate the unknown E“ from (3) we next

est blish the interrelation between E“ and~. As a result of

the ~translational symmetry of the dielectric wafer the three

coniponents of E“ are related to those of j“ by three linear
alg~braic equations. We write these equations in the follow-

1

ing orm:

3

or, in matrix notation

JY=z. y. (4)

The elements of the “impedance dyadic” Z can be found by

elementary methods. The computation of the elements Z ~~,

Z1 ~ = Zz ~, and Z22 is given in [2]. The elements Z3 ~ and

Z32 can analogously be found from the set of equations

(A1)-(A13) in [2]. The dyadic elements Z,,, Z,3, and Z,,,

on the other hand, can be obtained in the following way.

We replace the last equation (A2) with the inhomogen-

eous Maxwell’s equation

curl (H) = 8 aF/at + j3 i3, 0<2<1

where is is the unit vector in the z direction. The boundary

conditions at z = 1 are conveniently expressed by

(~2)z=, -o – (~,)z=, +o =jl

(~l)==l+o – (Hl)z=l-o=j,.

Substitution of the particular solution

F1=O

F2=0

F3 = exp (kor – ictx – ifly), O<z<l

HI = (p/cop)F3

H2 = – (a/o+u)F3

H3=0

F= H=O, 2>1

into (Al ) and (A2) and application of the above boundary

conditions yield three additional relations between the

dyadic elements, from which Z1s, Z23, and Z33 can be
solved. We find

Zll = – ‘2Y2 F _ iw~2p F

icrx(ctz + /12) 1 ct2+ p2 2

{
Z12=Z21= –c@ :2 F,–*F2 \

KO&(c(+ p) (X2+ /?2 I

Z23 = –Z32 = –-~F1
cO&

(x2+ /?2F
z33=–2g ——

Y y2io.x 4

with

{
—-+f )

–1
F1= y

tanh y cy~

/
1

–1
F2 = ~– + ~yO

~tanh y

(5)

1=1
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In (5), e and p represent the permittivity and the perme-

ability, respectively, of the dielectric wafer relative to those

in the half-space z > 1. The permittivit y and permeability y in

the half-space z >1 are normalized to unity. The variables E
andj depend on time through the factor exp (kot). Substitu-

tion of (4) into (3) yields

W = ~ Re ~~ l(u,~) da d~ (6)
–m

where

I(ct,/1) = – 4rc2j”*. Z* j“.

It is assumed that a and Pare real variables. However, for the

following two reasons there is an ambiguity in W, given by

(6). First, as we shall presently investigate in more detail, for

real values of co, I(u,fl) may become infinitely large in some

regions of the u–B plane. In order to remove this ambiguity

we note that if we admit a current distribution that, in the

time domain, remains nonzero for t + m, we must, in the

frequency domain, impose on co the condition

Im (co) s –O (7)

otherwise a Fourier transformation with respect to time is

not allowed. Second, ambiguity arises from the indetermi-

nateness of the sign of yO. This difficulty is solved by the

following argument. The matrix elements of Z, given by (5),

are derived by assuming in the region z > 1 plane-wave

solutions that depend on time and space througlh the factor

exp (kot – iax – i~y – yOz). However, in order to satisfy

Sommerfeld’s radiation condition we must impose on yOthe

auxiliary condition

Re (yO) 2 +0. (8)

In view of (7) and (8) the ambiguity in (6) has now

disappeared. We note that the uncertainty of the sign of y

introduces no ambiguity because Z is an even function of y.

From the law of conservation of energy it follows that, for

Im (co)= – O, W must be equal to the time average of the

power passing across a hemisphere in the half-space z >0
with a radius sufficiently large to cover the region of power

supply. This power is partly carried by “space waves,” i.e.,

plane waves propagating in the half-space z > 1; partly by

“surface waves,” guided by the dielectric wafer; and, if the

microstrip is infinitely long, partly by the microstrip itself.

We shall now show that each of these contributions can be

attributed to distinct regions in the c@ plane. To that end

we first remark that (6) is valid for any arbitrary current

distribution. Let us in particular consider the infinitesimal

distribution dj’’(a,~), defined by

dy’’(u,p) =j’’(c$p), ct~ -= a < %) + d%, PO<1? ‘: flo + Wo

dy’’(a,p) = o, elsewhere.

Then, in view of (6), the furnished power dW is

dW = ~ Re {I(uo,flo) dtio dflo}.

On the other hand the emitted power dW passingacross

the “large” hemisphere in the half-space z > (Ois carried

exclusively by those plane waves whose x component kX of

the wave vector lies in the interval a. < k. e cto+ dctoand,

analogously, whose y component kY lies in the interval

PO< k,< PO+ dflo. In other words, I(kX,kY) can be in-
terpreted as the density in the two-dimensional wavenumber

space kx,kY of the emitted power W. Now, let us first consider
the part of the power radiated into the half-space z >1. This

part is carried by plane waves whose z component of the

wave vector is equal to – iyo. Such plane waves are noneva-

nescent only if y. is purely imaginary. Hence, in view of (5),

this part of the power should be attributed to the region in

the c@ plane given by

lzz + /?2 <02.

We next consider the part of the radiated power carried by

surface waves. It is typical of such surface waves that j“ is

zero, whereas E“ is finite. Hence the power carried by sur-

face waves should be attributed to that part of the a-~ plane

for which l/Det (Z) = O. An investigation of (5) reveals that

at a = O, p = O Det (Z) remains finite. On the other hand
Det (Z) becomes infinitely large if either F; 1 or F; 1 in (5)

goes to zero. -

For the case where

F~l=O (9)

we easily verify from (4) and(5) that E’~/E$ = et/j’. Hence the

electric vector in the plane z = 1 is parallel to the direction of

propagation, i.e., the surface waves are of the TM type. We
note that in the long-wavelength limit we may replace

tanh (y)/y by unity. Hence, in our case, equation (9) is

equivalent to

az + /32 = co2 + {(&p – 1)/&@4. (lo)

From this we conclude that the power carried by surface

waves of the TM type corresponds to a circle in the a–fl

plane, determined by (10). We note that (10) also determines

the propagation velocity of the type of waves considered, i.e.,

equation (10) is the so-called dispersion relation.

For the case where

F~l=(l (11)

we find, by an analogous reasoning, that F; 1 = O is the

dispersion relation for surface waves of the TE type. It

appears, however, that (11 ) has roots only for real values of u

and /? if (8P – 1)@z 2 n2/4. Hence, in the long-wavelength

limit, surface waves of the TE type are nonpropagating and

therefore do not contribute to the power transport.

From the above analysis it follows that for calculating the

power carried by surface waves and space waves,j’’(c@ need

only be known for small values of a and /3. In space

coordinates this means that we need only know the average

currents, flowing in the x and y directions, rather than the

complete current distribution.

Finally, if the microstrip is infinitely long, part of the

furnished power may be propagated by the microstrip. We

shall discuss this situation in the next section, where it is

shown that the contribution to W is in that case due to

singularities in j“(a,/3).
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RADIATION OF POWER FROM AN INFINITELY LONG

TRANSMISSION LINE EXCITED BY A VOLTAGE SLIT

We consider a microstrip of infinite length, extending

fromx= –cntox= coandfromy= –w/2toy= w/2(see

Fig. 1). At x = O a voltage step U(x) is applied. Here U is the

unit-step function. We introduce the transmission line con-

cepts of specific inductance L, specific capacitance C, charac-

teristic impedance ZC = (L/C)l/2, and propagation velocity

u = (LC) - 1/2. The permittivit y and permeability of the

dielectric wafer are again denoted bye and p, respectively.

The chosen thickness of the wafer is unity and in

the half-space z >1 the chosen permittivity and permeabi-

lity are unity also. Consequently m, e, p, L, and C are

dimensionless parameters. The total current .l flowing in the

x direction is the well-known transmission line solution

J(X) = (1/2zc) exp (– ik Ix I ) (12)

where the wavenumber k is related to co and v by

k = (@J.

The longitudinal current density jl(x,y) is related to J(x) by

j:2j1(AY) @= J(~) (13)

From (2), (12), and (13 ) it follows that the Fourier transform

X (%B) of jl (x,y) satisfies

jl(a,o) = – k14rc2.Zc(a2– k2) (14)

where, in view of (7),

Im (k) s –O.

As mentioned in the introduction, the contribution of the

transverse current component jj to W’ is negligible. In order

to show this we first remark that outside the region of

excitation, where jl (x,y) is approximately equal to the

magnetostatic current distribution, the ratio jl(x,y)/jl(x,O)

is an even, nonnegative function of y. From this it follows

that, for small values of u and /?, the ratio of the Fourier

transforms j; (c@)/j~ (IX,O)satisfies the relation

ii(@)/yi(@) = 1 – a2~2 (15)

with
a2 < w2@

A similar argument applies to the surface charge density

in the conducting strip. Let p“(a,~) be the Fourier transform

of the surface charge density p(x,y). Then, analogous to (15),

p“(c@)/p’’(a,O) = 1 – b2B2

with

b2 < w2/8. (16)

On the other hand, the continuity equation for the electric

charge requires that, for any a and ~,

– i~j~ _ i~j~ = _ i~p”. (17)

From (15)-(17) we then find that, for small values of a and ~,

j~/f~ = ~fl(a2 – b2) (18)

with

a’ < w2/8

b2 < w2/8.

From (18) we conclude that, in the long-wavelength limit,

the contribution from j; to W is indeed negligible. Hence the

expression for the power density l(cqfl), defined in (6),

simplifies to

l(a,fl) = – 4n2j~*j~ Z~l. (19)

We are now in a position to calculate the various contribu-

tions to W.
We observe that, because we consider only small values of

y, it is legitimate to replace y/tanh y by unity. Z ~~ then

becomes a rational function of yo, having poles approxi-

mately at yO = (&p – 1)CD2/&,at yO = –&, and at yO = – I/p.

The residues at these poles are easily found and Z1 ~can be

decomposed into partial fractions:

z ((X2 E _ (qf - l)2c02/& ico
11 = —=

1(DE & + Yo
1Yo – (w – l)c02/& – yo + l/p ‘

IYI ~L IYOI <1. (20)

The various contributions of 1 to W can now be calculated

analytically. Consider the region a’ + 92 s co2. In this

region y. is positive imaginary. As pointed out in the

previous section, the contribution to W, which we denote by

WI, can be interpreted as the power radiated into the

half-space z >1. We write the result of our calculation in the

following form:

8ZLZ {~l(LC,SP) -_~z(LC,&,~,CO)}WI=* (21)

with

[
~i(a,b) = (a2/b2) 1 + (b2 – 4b + 1 + 2a)

“{

1 t avz _ 1

—In al/2 + 12(a – 1)+ 4(a)1/2 I

(

(b’ – a2) 1 1 all’ _ 1

+ — in
a 2(a – 1) – 4(a)112 al/2 + 1

)1

()J2(Lcw@) = ‘(;,’--21)3 ~ 3’2 I co [ .LC–1

In (21) terms containing co to the fourth power and higher

are omitted because these terms are of the same order as the

error introduced by the long-wavelength approximation.

The factor~l is of the order of unity for all possible values of

LC and ep. In order to illustrate this we give some typical

values:

J,(l+o, l+o)=l

J,(m, m)= 4/3

~1(6,9) = 1.369.

The factor ~2 approaches zero if OJgoes to zero.
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We note that in the dimensionless expression (21) dimen-

sions can be restored by making the following substitutions:

WI+ wl(po/&o)l@

a + @(&opo)l/%

&+ &/&.

p + p/p.

L ~ L/pO

c + cf&~

where co and p. are the permittivity and permeability,

respectively, of the half-space z >1 and h is the wafer

thickness.

Next we consider the region az + 12> co2.In that region

y. is real and, hence, contributions to W can arise only from

the poles of 21 ~ and of j’~*j’~. As pointed out in the previous

section the pole of Z ~~at y. x (&p — 1)co2/&gives a contribu-

tion that can be interpreted as the power carried by surface

waves of the TM type. We denote this contribution by W2.

For W2 we find -.

(22)

where~z is again given by (21 ). We conclude that the fraction

of the radiated power carried by surface waves is of a higher

degree in co than the fraction carried by the plane waves

launched in the half-space z >1. Hence, in the long-wave-

length limit this fraction is negligible.

Finally we investigate the contribution to W caused by the

singularities of j~*j~ at a = + k. We note that homogeneous

solutions in which the x component of the wave vector is t k
are the transmission line solutions. Hence the contributions

of these singularities to Ware equal to the power carried to

infinity by the transmission line. The region in the a–fl plane

that contributes to W is in this case not limited to small

values of P, and hence this contribution cannot be found

from (6).

However, because the total supplied power W must be

w = 1/42.

the power propagated by the transmission line is 1/42. –

WI – W2. We remark that the current J(x), given by (2), may

be considered to be a superposition of two waves J ,(x) and

J2(x), with

.lI(x) = (1/2zC) exp (– ikx), —co<x <cc

.12(x) = (1/2ZC){exp (ikx) – exp (– ikx)}, X<o

J2(X) = o, X>o.

Now the contribution of J1 to WI and Wz is zero. This is so

because the Fourier transform J, contains the Dirac 6
function: d(a – k) and Re (Z ~~) = O for a = k. On the other

hand, J2 can be interpreted as a traveling wave, incident

from x = – m and reflected at an open end at x = O. From

this remark it follows that WI + W2 may alternatively be

interpreted as the power radiation caused by an open-end

reflection of a current wave of amplitude l/2ZC. This obser-

723

vation allows us to compare our results with that obtained

by Lewin [2].

We account for an amplitude factor l/2ZC, a factor of one

half for the ratio average value/peak value and a factor of

120z for the ratio (PO/8.) 1’2. In order to avoid confusion

with our symbol e we denote the “effective” dielectric

constant used by Lewin by &.fP If ,a = 1 it is identical to LC in

our notation. For the ratio of the powers calculated with the

two methods we find

PLewin &eff F’L(%ff)

1207c “ 8Z~ WI = 2~1(LC,qu)
(23)

where, according to formula (14) of [1], FL is given by

(&eff – 1)2 log:&

FL(&eff) = * – ——
2&eff4/;e 6:/: — 1

and ~1 is given by (21).

It is interesting to note that in the two special cases&p = 1,

LC = teff = 1 and &p ~ m, LC = Seff~ m the ratio (23) is

exactly unit y. For the case ~ = 2.8, E .ff = 2.25, which is

considered by Lewin, we find, from (23),

PLewin

1207c “ 82; WI
= 1.13.

POWER RADIATION FROM A HALF-WAVE OPEN-END

MICROSTRIP RESONATOR

We consider a microstrip extending from x = – a to

x = a. Let the longitudinal current J(x) along the strip be

given by

J(x) = cos (7cx/2a), \x

J(x) = O, elsewhere.

The Fourier transform j; (a,fi), defined in

be

cos (au)
jl(M3) = – 4Za(uz –

7c2j4a2)’

<a

(24)

1), is now found to

The calculation of the power radiated by this half-wave

resonator goes along the same lines as that in the preceding

section. We substitute (20) and (25) into (6). Integration with

respect to P then yields

W= W1+W2 (26)

where

m2LC

J

1 COS2 {nz/2(LC)1/2]
w,== –

o (LC - Z2)2

{
~ (E2~2 - Z2)(1 - Z2) + 2(&P - 1)2Z2

(w-1)’ld ~z—

E(l – Z2)1’2 )

m2LC
w2=~

J

1 COS2 {7cz/2(LC)112} (&# – 1)3 I@ I ~z

n.! n [LC – Z2\2 &(l — Z2)1’2 “
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Here WI is again the power radiated into the half-space

z >1 and W2 is the power carried by surface waves. The

integrals occurring in (26) can, for instance, be evaluated

with a stored-program pocket calculator. An approximate

expression, which is in most cases sufficiently accurate, is

obtained by neglecting the term containing co to the third

power and replacing the factor

COS2{7cz/2(Lc)l/2}

(ic - z’);

by l/(LC)2. We then obtain

C02

2nE2Lc
(27)

In the long-wavelength limit the error in (27) is smaller than

7 percent.

A useful circuit parameter is the quality factor Q of the

resonator, which is defined in the following way. Let E, be

the electromagnetic energy stored in the resonator. In our

case Es is conveniently found from

i

a

E,=+ J*JL dx. (28)
—a

The quality factor Q is then defined by

(29)

In view of (24), (28), and (29) we then find

~ = z(L/c)’/2

4W
(30)

where W is given by (26) or, approximately, by (27).

POWER RADIATION FROM A CIRCULAR RESONATOR

We consider a circular resonator of width w and radius a,
seeFig. 2. Consistent with the long-wavelength condition we

assume that a is large compared to w. Let the total current J

along the strip, in terms of the polar coordinates r and ~, be

given by

J(r,@) = exp (– kj). (31)

Contrary to the current density in the preceding sectionjj

is now a two-dimensional vector. In the long-wavelength

limit the radiated power is again independent of the longitu-

dinal current distribution and the transverse currents may

be neglected. Hence we write for the components j ~and j2 of

j

jl(~,$) = –exp (– i~) sin (@)d(r – a)

j2(r,f#) = exp (– io) cos (q5)d(r – a). (32)

The Fourier transform j“ is, in view of (2),

j{(kt) = (Wn){J@z) + exp (– 2i~)Jz(ka)}

jXk,V) = (44n){Jo(ka) – exp (–2ii)J2(ka)} (33)

where Jo and Jz are the zero order and second order Bessel

functions, respectively, of the first kind and k and ~ are

2=1

Z“z?27’zzzzz’zzv 2Z5’Z+Z’22V2% A,
-+Y Y=a

/
h

Fig. 2. Cross-sectional view of a circular microstrip resonator.

related to u and fi by M = k cos ~, /3 = k sin +. The im-

pedance matrix Z is now asymmetric square matrix of order

two. Its elements 21 ~, 21,, Zz,, and Z2Z are given by (5).

The evaluation of the average radiated power W is now

straightforward. We find

with

W, = (TCCD2/&2)j 1J;(~){–z + (&# – I)’/z}
o

+ {Jo(K) – J2(c)}2(&2/t2Z/4Lc)ZdZ

- (Z2 I (o 13/2e3)(&p- 1)3J;{(LC)- 1/2}

W2 = (n’ Ico13/:3)(ep – 1)3.1~{(LC)- 1/2}

C = {(1 – z2)/LC}1i2.

WI is again the fraction of the power carried by space waves

and W2 the fraction carried by surface waves. An approxi-

mate expression for W is obtained by replacing J~(~) by

L2/4 and JO – Jz by unity and omitting the term contain-
ing Ico 13.We then find

W z (nC02/4LCE2)~2p2 – 4Ep/3 + 8/15). (35)

The quality factor Q can now be calculated in a way

analogous to that in the preceding section, By using (23) we

find

Q
4Lc(L/c)l/2

(36)
= co2p2(l – 4/3cp + 8/15e2p2) “

When comparing (27) and (30) with (36) it is seen that the

quality factor of a circular resonator is approximately equal

to that of a stretched open-end reionator. This is in agree-
ment with results, reported in [7].

POWER RADIATION FROM A HAIRPIN RESONATOR

The last configuration we investigate is the “hairpin”

resonator, drawn in Fig. 3. We assume thats < a, so that we

may represent the current density j(x,y) by

jl(x,y) = cos (7cx/2a){6(y) – 6(Y – s)}, O<–x Sa

jl(~,y) = 0, elsewhere

j2(%Y) = 6(X), O<y<s

j2(~,y) = 0, elsewhere. (37)
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Fig. 3. Cross-sectional view of the hairpin microstrip resonator.

The Fourier transforms ~l(c@) and~~(a,j?) are now found to

be

j~(ct,~) = S/4TC2, ps + 1. (38)

The calculation of the supplied power W is now straight-

forward. We find

w = ((3’s2/s2) J1(A +1?+ D) dz (39)
o

where

~ = Z2 – 2z(L.C)l/2 sin {nz/2(LC)i/2} + LC

32n(LC – 22)2

. {(1 - z2)2(&p – Z2) + 4(1 - z2)(&# - 1)2Z’

+ (8/e)(e# – 1)3 \co \ (1 – Z2)1/2Z2}

Z(LC)l’2 sin {7cz/2(LC)1’2} – Z2
B=

16?T(LC– Z2)

“ {-(1 - Z2)2 + 4(1 - z2)(&p - 1)2

+ (8/8)(Ep – 1)3(1 – z2)1/2 Icol}

D = (1/47r){(&p – 1)2(1 – Z2) + (EV – 1)3(1 – Z2)1/2 la I/&

+ (1 – Z2)(–5 + Z2 + 8Ep)/8}.

We note that L and C are now the specific inductance and

specific capacitance, respectively, for the mode of propaga-

tion with odd symmetry. It appears that the term J: D dz is
several times larger than the term ~~ (A + B) dz. Using

W x (co4s2/e2)f: D dz we obtain the approximate relation

W N (co4s2/4ne2){4/15 + (2/3)(&p – l)cp

+ (rc/48)(8p – 1)’ Io I }. (40)

The quality factor is again given by (30) and hence, in view

of (40), we obtain

Q % (n2e2/04s2)(L/C) 112

~{4/15+ (2/3)(.sp - l)EV + (n/4~)(e# - 1)3}- ‘. (41)

Contrary to the preceding cases, where, in the long-wave-

length limit, Q was proportional to co-2, in this example Q is

proportional to co-4. Hence, in the long-wavelength limit,

the hairpin resonator is expected to exhibit particularly low

radiation losses. The gain in Q may, however, be smaller

than expected from (41 ), due to ohmic losses.
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