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The Radiation of Electromagnetic Power
by Microstrip Configurations

LEO J. vaN DErR PAUW

Abstract—A new technique for calculating the radiation losses of
microstrip configurations is presented. The method applies if the
wavelength is large compared to the width of the conducting strip and
the thickness of the dielectric wafer. It is shown that the radiated
power, which is partly carried by “space waves” and partly by
“surface waves,” can be computed in terms of the specific inductance
and the specific capacitance of the transmission line, without making
any assumptions regarding the current distribution in the microstrip.
It appears that the fraction of the radiated power carried by surface
waves contains the frequency to a higher power than does the fraction
carried by space waves and is therefore relatively small. The
investigated configurations are the infinitely long transmission line
excited by a voltage-slit, the half-wavelength straight resonator, the
full-wavelength circular resonator, and the quarter-wavelength hair-
pin resonator. It follows that the quality factor of the straight
resonator and the circular resonator are inversely proportional to
the square of the frequency, whereas the quality factor of the hairpin
resonator is inversely proportional to the fourth power of
the frequency.

INTRODUCTION

RIGOROUS CALCULATION of the power radiated
Aby microstrip configurations is very complicated. This
is due to the fact that the problem of finding the current
distribution in the conducting strip and in the short-
circuiting posts is a mixed boundary value problem, which
cannot be solved by analytical methods. However, in most
cases of practical interest the wavelength of the propagating
mode is large compared to the width of the conducting
microstrip and to the thickness of the dielectric wafer. In
such cases detailed knowledge of the current distributions is
not required for calculating the radiated power. In fact it can
be shown that, in the long-wavelength limit, only the total
current flowing along the microstrip and in the short-
circuiting posts is relevant for power radiation. These total
currents can be calculated by a simple transmission line
approach, using the concept of the specific capacitance and
the specific inductance of the microstrip. We shall assume in
this paper that the long-wavelength condition is satisfied
and that the specific capacitance C and the specific induc-
tance L are known parameters.

A rather classical situation is met if the dielectric and
magnetic properties of the wafer are not different from those
in the adjacent halfspace. In that case the far-field Hertzian
vector can be obtained from the well-known solution of
Poisson’s equation, which is valid in an unbounded and
uniform medium. However, the dielectric constant of the
wafer is normally many times larger than that in the adjacent
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halfspace and in that case the “uniform medium” approach
is not satisfactory. An approach followed by Lewin [1] and
others [3]-[7] is to account for the larger dielectric constant
of the wafer by introducing “polarization” currents, flowing
from the strip to the ground plane.

The magnitude of these currents is estimated by Lewin
from an approximate electric field configuration under the
strip, together with an “effective” dielectric constant of the
platelet. The Hertzian vector on a hemisphere of infinite
radius is then computed by taking as the source function
the electric currents and the polarization currents in
the platelet and by using the Green’s function of
the unbounded uniform medium. The total radiated power
is next obtained by integrating Poynting’s vector over
the hemisphere of infinite radius. Though we may expect
that this approach will give the correct order of magnitude of
the radiated power, the errors introduced by the simplifying
assumptions seem hard to estimate.

In the approach followed in this paper, use has been made
of the fact that the power radiated by the microstrip
configuration should be equal to the power necessary to
maintain the current density at a stationary value. This
furnished power, in turn, can be found by calculating the
scalar product of the current density and the complex
conjugate of the electric field opposing the current density
and integrating this scalar product over the space coordi-
nates. The time average of the total furnished power is then
obtained by taking the opposite of the real part and dividing
by two. However, in space coordinates this calculation is
very complicated, due to the complicated structure of
Green’s function interrelating the electric field and current
density in an inhomogeneous medium. A much simpler
expression for the delivered power is obtained in terms of the
Fourier transforms of current density and electric field with
respect to the coordinates of the plane of the wafer. The
interrelation between these Fourier transforms is simply
algebraic, because of the translational symmetry of
the dielectric wafer. The so-called impedance dyadic giving
this interrelation is found to be an elementary function of
the wafer parameters. As a result of this Fourier transforma-
tion the calculation of the furnished power can be carried
out without any simplification of the model, the only
assumption being that the long-wavelength condition is
satisfied. In the next section we give a detailed description of
the method.

OUTLINE OF THE METHOD

We denote the x component of the surface current density
in the plane z = 1 by j, and similarly the y component by j,
(see Fig. 1). The current density in the region 0 <z < lis



720 TEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. MTT-25, NO. 9, SEPTEMBER 1977

d

Y=-W, YW,

pzZ

Cross-sectional view of a microstrip transmission line.

Fig. 1.

assumed to be in the z direction and independent of z. This
constraint has no influence on the power radiation, provided
that the long-wavelength condition is satisfied. We denote
this} current density by j; and we represent the scalars j, j,,
and j; simultaneously by the vector j(x,y).

Sfimilarly, let E, represent the x component of the electric
field in the plane z = 1and E, the y component. The avefage
value of the z component of the electric field in the region
0 <z < lis denoted by E;. We represent E |, E,, and E 5 by
the|vector E(x,y). We denote the time average of the power
to be furnished to maintain j stationary by W. By definition,

W is given by

W= —1Re ﬁﬁ*-jdxdy. (1)

In (1) the asterisk indicates the complex conjugate value.
We‘ note that the plane z = 0 does not contribute to W,
because at z = 0 the x and y components of the electric field
are‘zero. This is not necessarily the case in the conductive
strip, in spite of the assumed infinite conductivity, because
an externally applied driving field may be present. The
infinite conductivity then assures that the sum of the electric
and the driving field is zero [2]. In order to evaluate (1) we

introduce the Fourier transforms E” and j” of E and j:

E(x,y) = ” E"(o,8) exp (—iox — iBy) da df

Jx.y) = U J'(ouB) exp (—iex — ify) da dB.  (2)
Application of Parseval’s theorem to (1) then yields

W= —3Redn® [[ E™ j" du dp. ()

In order to eliminate the unknown E” from (3) we next
establish the interrelation between E” and j”. As a result of
the }translational symmetry of the dielectric wafer the three
components of E” are related to those of j” by three linear
alge‘braic equations. We write these equations in the follow-

ing form:

~ 3
E{=Y Zyji, k=123
=1

or, in matrix notation
E'=Z-j. 4)

The elements of the “impedance dyadic” Z can be found by
elementary methods. The computation of the elements Z "
Zyy = Z,y, and Z,, is given in [2]. The elements Z, and
Z3, can analogously be found from the set of equations
(A1)-(A13) in [2]. The dyadic elements Z 3, Z,, and Z 3,
on the other hand, can be obtained in the following way.

We replace the last equation (A2) with the inhomogen-
eous Maxwell’s equation

curl (H)=¢ 0F/0t + j3i;, O<z<]1

where #; is the unit vector in the z direction. The boundary
conditions at z = 1 are conveniently expressed by

(H2)2=1—0 - (Hz)z=1+0 =J1
(Hl)z=1+0 - (Hl)z=1—0 =Ja
Substitution of the particular solution
F, =0
F,=0
F3 = exp (iwt — ionx — ify),
Hy = (Bjop)F,
H; = —(o/op)Fy
Hy;=0
F=H-=0,

into (A1) and (A2) and application of the above boundary
conditions yield three additional relations between the
dyadic elements, from which Z,;, Z,;, and Z,, can be
solved. We find

O<z<l1

z>1

, oa2y? - 0B .
BT we? + ) P+
2 -
y icop
Ziy =2y = — - F
12 2 “p iwe(@? + p2) ' a4+ 22
®
Liz=—24y = —F
13 31 ol
B*y? i’
Zyy= — Fy— F
22 iwe(@® + %) 1 a2+ g2
B
Zyy=~Zyy=—LF
23 32 vt
. 2, p2
iopy o+ f
Zyy= — 2 yziwg F1 (5)
with

2 1
Y Y
F, = I
! {tanhy +8y0}

_lr !
2T {tanhy +W°}

y2:a2+ﬁ2—8,uw2

76 =0+ % — w2
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In (5), ¢ and p represent the permittivity and the perme-
ability, respectively, of the dielectric wafer relative to those
in the half-space z > 1. The permittivity and permeability in
the half-space z > 1 are normalized to unity. The variables E
and j depend on time through the factor exp (iwt). Substitu-
tion of (4) into (3) yields

W=14Re ﬁ I(w,p) dox dp (6)

where
I(,B) = —4n%"* - Z* - j".

It is assumed that « and 8 are real variables. However, for the
following two reasons there is an ambiguity in W, given by
(6). First, as we shall presently investigate in more detail, for
real values of w, I(«,f) may become infinitely large in some
regions of the «—f plane. In order to remove this ambiguity
we note that if we admit a current distribution that, in the
time domain, remains nonzero for t — oo, we must, in the
frequency domain, impose on w the condition

Im (w) < -0

(7)
otherwise a Fourier transformation with respect to time is
not allowed. Second, ambiguity arises from the indetermi-
nateness of the sign of y,. This difficulty is solved by the
following argument. The matrix elements of Z, given by (5),
are derived by assuming in the region z > 1 plane-wave
solutions that depend on time and space through the factor
exp (iwt — iax — ify — yoz). However, in order to satisfy
Sommerfeld’s radiation condition we must impose on y, the
auxiliary condition

Re (yo) = +0.

(8)

In view of (7) and (8) the ambiguity in (6) has now
disappeared. We note that the uncertainty of the sign of y
introduces no ambiguity because Z is an even function of y.

From the law of conservation of energy it follows that, for
Im (w) = —0, W must be equal to the time average of the
power passing across a hemisphere in the half-space z > 0
with a radius sufficiently large to cover the region of power
supply. This power is partly carried by “space waves,” ie.,
plane waves propagating in the half-space z > 1; partly by
“surface waves,” guided by the dielectric wafer; and, if the
microstrip is infinitely long, partly by the microstrip itself.

We shall now show that each of these contributions can be
attributed to distinct regions in the a—p plane. To that end
we first remark that (6) is valid for any arbitrary current
distribution. Let us in particular consider the infinitesimal
distribution dj’(e.,B), defined by

djﬂ(“’ﬂ) =j”(°‘sﬁ)7 oo <o <o+ dog, Bo < B < ,BO + dBo

dj"(0.8) = 0,

Then, in view of (6), the furnished power dW is
dw = % Re {I(ao,ﬁo) d“o dﬁo}.

On the other hand the emitted power dW passing-across
the “large” hemisphere in the half-space z > 0 is carried

elsewhere.
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exclusively by those plane waves whose x component k, of
the wave vector lies in the interval oy < k, < & + dagand,
analogously, whose y component k, lies in the interval
Bo < k, < Bo + dB,. In other words, I(kk,) can be in-
terpreted as the density in the two-dimensional wavenumber
space k,k, of the emitted power W. Now, let us first consider
the part of the power radiated into the half-space z > 1. This
part is carried by plane waves whose z component of the
wave vector is equal to —iy,. Such plane waves are noneva-
nescent only if y, is purely imaginary. Hence, in view of (5),
this part of the power should be attributed to the region in
the a—f plane given by

a? + 2 <l

We next consider the part of the radiated power carried by
surface waves. It is typical of such surface waves that j” is
zero, whereas E” is finite. Hence the power carried by sur-
face waves should be attributed to that part of the o—f plane
for which 1/Det (Z) = 0. An investigation of (5) reveals that
at = 0, = 0 Det (Z) remains finite. On the other hand
Det (Z) becomes infinitely large if either F7 ' or F; ' in (5)
goes to zero.

For the case where

Fi'=0 ©)

we easily verify from (4)and (5)that E'{ /E% = o/f. Hence the
electric vector in the plane z = 11is parallel to the direction of
propagation, i.e., the surface waves are of the TM type. We
note that in the long-wavelength limit we may replace
tanh (y)/y by unity. Hence, in our case, equation (9) is
equivalent to

o + B2 = w? + {(ep — 1)/e} 0. (10)

From this we conclude that the power carried by surface
waves of the TM type corresponds to a circle in the a—f
plane, determined by (10). We note that (10) also determines
the propagation velocity of the type of waves considered, i.e.,
equation (10) is the so-called dispersion relation.

For the case where

F;1=0

(11)
we find, by an analogous reasoning, that F; ' =0 is the
dispersion relation for surface waves of the TE type. It
appears, however, that (11) has roots only for real values of o
and B if (su — 1)o? > n?/4. Hence, in the long-wavelength
limit, surface waves of the TE type are nonpropagating and
therefore do not contribute to the power transport.

From the above analysis it follows that for calculating the
power carried by surface waves and space waves, j(«,f) need
only be known for small values of « and B. In space
coordinates this means that we need only know the average
currents, flowing in the x and y directions, rather than the
complete current distribution.

Finally, if the microstrip is infinitely long, part of the
furnished power may be propagated by the microstrip. We
shall discuss this situation in the next section, where it is
shown that the contribution to W is in that case due to
singularities in j"(e,f).



722

RADIATION OF POWER FROM AN INFINITELY LONG
TRANSMISSION LINE EXCITED BY A VOLTAGE SLIT

We consider a microstrip of infinite length, extending
fromx = —o0 tox = oo andfromy = —w/2toy = w/2 (see
Fig. 1). At x = O a voltage step U(x) is applied. Here U is the
unit-step function. We introduce the transmission line con-
cepts of specific inductance L, specific capacitance C, charac-
teristic impedance Z, = (L/C)'/?, and propagation velocity
v = (LC) 2. The permittivity and permeability of the
dielectric wafer are again denoted by ¢ and y, respectively.
The chosen thickness of the wafer is unity and in
the half-space z > 1 the chosen permittivity and permeabi-
lity are unity also. Consequently w, &, u, L, and C are
dimensionless parameters. The total current J flowing in the
x direction is the well-known transmission line solution

J(x) = (12Z) exp (—ik|x|) (12)
where the wavenumber k is related to o and v by
k = w/v.
The longitudinal current density j,(x,y) is related to J(x) by
w/2
| ey dy =) (13)

From (2), (12), and (13) it follows that the Fourier transform
Ji(eB) of jy(x,y) satisfies

Ji(#0) = ~ kAT Z L~ K?)

where, in view of (7),

(14)

Im (k) < —0.

As mentioned in the introduction, the contribution of the
transverse current component j% to W is negligible. In order
to show this we first remark that outside the region of
excitation, where j,(x,y) is approximately equal to the
magnetostatic current distribution, the ratio j,(x,y)/j(x.0)
is an even, nonnegative function of y. From this it follows
that, for small values of @ and B, the ratio of the Fourier
transforms j;(o,B)//71(o,0) satisfies the relation

Jilep)ii0) =1 — a’p? (15)

with
a® < w/s.

A similar argument applies to the surface charge density
in the conducting strip. Let p”(«,f) be the Fourier transform
of the surface charge density p(x,y). Then, analogous to (15),

p"(p)/p"(0) = 1 — b*p*
with
b? < w?/8. (16)

On the other hand, the continuity equation for the electric
charge requires that, for any « and §,

—iaj] — ifjy = —iwp”. (17)
From (15)-(17) we then find that, for small values of e and f3,
15173 = apla® — b?) (18)
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with
a® <w?/8
b? < w?/8.

From (18) we conclude that, in the long-wavelength limit,
the contribution from j3 to Wis indeed negligible. Hence the
expression for the power density I(cf8), defined in (6),
simplifies to

IouB) = —4n’j 11 211 (19)

We are now in a position to calculate the various contribu-
tions to W.

We observe that, because we consider only small values of
y, it is legitimate to replace y/tanh y by unity. Z,; then
becomes a rational function of y,, having poles approxi-
mately at y, = (eu — 1)w?/e, atyo = —¢, and atyo = —1/u.
The residues at these poles are easily found and Z; can be
decomposed into partial fractions:

| e (en — 1Pw?/e iw
vo — (e — Vo?/e|  yo + 1/’
7] <1, [70] <1. (20)

The various contributions of I to W can now be calculated
analytically. Consider the region o? + 2 < w? In this
region y, is positive imaginary. As pointed out in the
previous section, the contribution to W, which we denote by
W,, can be interpreted as the power radiated into the
half-space z > 1. We write the result of our calculation in the
following form:

w0
= gz UALCem) —fo(LCano)  (21)
with
fy(ab) = @b?) [1 + (> — 4b + 1 + 24)
A I S S s
Aa—1) 4a)'* a'?+1
N it Y I S SO
o [2a-1) 4@ a7 +1
_men— 1P ( LC )
f(LCeu0) = 26832 IC —1 |o]-

In (21) terms containing  to the fourth power and higher
are omitted because these terms are of the same order as the
error introduced by the long-wavelength approximation.
The factor f; is of the order of unity for all possible values of
LC and gu. In order to illustrate this we give some typical
values:

fil+0,14+0)=1
fi(o0, 0) =4/3
£1(6,9) = 1.369.

The factor f, approaches zero if w goes to zero.
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We note that in the dimensionless expression (21) dimen-
sions can be restored by making the following substitutions:

W, — Wy(ko/eo)'?
@ — w(go o) *h
£ gfeg

1= /o
L— Liue
C - Clg,

where ¢, and p, are the permittivity and permeability,
respectively, of the half-space z> 1 and h is the wafer
thickness.

Next we consider the region o> + 2 > . In that region
Yo is real and, hence, contributions to W can arise only from
the poles of Z,, and of j1*j. As pointed out in the previous
section the pole of Z | ; aty, &~ (ept — 1)w?/¢ gives a contribu-
tion that can be interpreted as the power carried by surface
waves of the TM type. We denote this contribution by W,.

For I’pz we find
602#2 C
2 2 _47I [2 fZ(L ,E,H,CO)

(22)

where f, is again given by (21). We conclude that the fraction
of the radiated power carried by surface waves is of a higher
degree in w than the fraction carried by the plane waves
launched in the half-space z > 1. Hence, in the long-wave-
length limit this fraction is negligible.

Finally we investigate the contribution to W caused by the
singularities of ji*j] at « = +k. We note that homogeneous
solutions in which the x component of the wave vectoris +k
are the transmission line solutions. Hence the contributions
of these singularities to W are equal to the power carried to
infinity by the transmission line. The region in the o—f plane
that contributes to W is in this case not limited to small
values of 8, and hence this contribution cannot be found
from (6).

However, because the total supplied power W must be

W = 1/4Z,

the power propagated by the transmission line is 1/4Z, —
W, — W,. Weremark that the current J(x), given by (2), may
be considered to be a superposition of two waves J ,(x) and
J5(x), with

J(x) = (1/2Z,) exp (—ikx),
Ja(x) = (1/2Z Yexp (ikx) — exp (—ikx)},
Ja(x)=0,

Now the contribution of J, to W, and W, is zero. This is so
because the Fourier transform J, contains the Dirac
function: 6(« — k)and Re (Z ;) = O for « = k. On the other
hand, J, can be interpreted as a traveling wave, incident
from x = — oo and reflected at an open end at x = 0. From
this remark it follows that W, + W, may alternatively be
interpreted as the power radiation caused by an open-end
reflection of a current wave of amplitude 1/2Z . This obser-

-0 < X < 00
x <0

x>0.
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vation allows us to compare our results with that obtained
by Lewin [2].

We account for an amplitude factor 1/2Z ., a factor of one
half for the ratio average value/peak value and a factor of
120x for the ratio (uo /e0)"% In order to avoid confusion
with our symbol ¢ we denote the “effective” dielectric
constant used by Lewin by ¢ 4. If u = 1itisidenticalto LCin
our notation. For the ratio of the powers calculated with the
two methods we find

Py ewin _ Eerr F L(Seff)
120~ - SZCZWI 2f1(LC,£u)

(23)

where, according to formula (14) of [1], F, is given by

2 12
Flews) = Eerr (8eff —~1) 8ef/f + 1
£f) = -
e Eepr + 1 26 r8eff et — 1

and f; is given by (21).

It is interesting to note that in the two special cases gu = 1,
LC =¢y;=1and gu— 00, LC = g4 — oo the ratio (23) is
exactly unity. For the case ¢ = 2.8, g = 2.25, which is
considered by Lewin, we find, from (23),

P Lewin

120r - 822w, ~ 1

PowER RADIATION FROM A HALF-WAVE OPEN-END
MICROSTRIP RESONATOR

We consider a microstrip extending from x = —a to
x = a. Let the longitudinal current J(x) along the strip be
given by

J(x) = cos (nx/2a),
J(x) =0, (24)

The Fourier transform j(«,f), defined in (1), is now found to
be

|x| <a

elsewhere.

_ cos (xa)
dra(e® — n*/4a*)’

The calculation of the power radiated by this half-wave
resonator goes along the same lines as that in the preceding
section. We substitute (20) and (25)into (6). Integration with
respect to f then yields

Ji(oup) =

Ipw] < 1. (25)

where
W= w?LC Jl cos? {nz/2(LC)"?}
YT 2me? g (LC — z%)?
-{(sz,u2 — 231 — 2%) + 2(ep — 1)*22
(eu — 17 ||
T
w?LC ! cos? {nz/2(LC)'?} (eu — 1)’ |w |
W = e’ L (LC — z*)? e(1 — z%)4? dz.
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Here W, is again the power radiated into the half-space
z> 1 and W, is the power carried by surface waves. The
integrals occurring in (26) can, for instance, be evaluated
with a stored-program pocket calculator. An approximate
expression, which is in most cases sufficiently accurate, is
obtained by neglecting the term containing e to the third
power and replacing the factor

cos? {nz/2(LC)"?}

(LC — z%)?
by 1/(LC)?. We then obtain
w?  [(2ep — 1)?
Was ( . L 1/5}. (27)

In the long-wavelength limit the error in (27) is smaller than
7 percent.

A useful circuit parameter is the quality factor Q of the
resonator, which is defined in the following way. Let E, be
the electromagnetic energy stored in the resonator. In our
case E, is conveniently found from

E,=% f J*JL dx. (28)
The quality factor Q is then defined by
wE,
In view of (24), (28), and (29) we then find
_ m(/ey?
Q=" (30)

where W is given by (26) or, approximately, by (27).

PowEeR RADIATION FROM A CIRCULAR RESONATOR

We consider a circular resonator of width w and radius g,
see Fig. 2. Consistent with the long-wavelength condition we
assume that a is large compared to w. Let the total current J
along the strip, in terms of the polar coordinates r and ¢, be
given by

J(r9) = cxp (~ig). (31)

Contrary to the current density in the preceding section, j
is now a two-dimensional vector. In the long-wavelength
limit the radiated power is again independent of the longitu-
dinal current distribution and the transverse currents may
be neglected. Hence we write for the componentsj; and j, of

J
Jilr,¢) = —exp (—i¢) sin (¢)5(r — a)

jalrid) = exp (—ig) cos (@) —a).  (32)
The Fourier transform j” is, in view of (2),
Jilky) = (iafAn){J o(ka) + exp (—2i))J 5 (ka)}
Jalky) = (a/An}Jo(ka) — exp (—2iY) 5 (ka)}  (33)

where J, and J, are the zero order and second order Bessel
functions, respectively, of the first kind and k and ¢ are
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Fig. 2. Cross-sectional view of a circular microstrip resonator.

related to « and B by o=k cos ¥, =k sin . The im-
pedance matrix Z is now a symmetric square matrix of order
two. Its elements Z,,, Z,,, Z,,, and Z,, are given by (5).

The evaluation of the average radiated power W is now

straightforward. We find

with
Wi = (o) [ A== + o = 1773

+ {Jo(8) — IO} (e*u?2/4LC)zdz
— (@* o [*/2e3)en — 1)°TH(LC)™ 2}
W, = (n* | [*/e®)en — 1)°TH(LC) ™ 12}
(={(1- z?)/LC}V2,

W, is again the fraction of the power carried by space waves
and W, the fraction carried by surface waves. An approxi-
mate expression for W is obtained by replacing J3({) by
{?/4 and J, — J, by unity and omitting the term contain-
ing | [*. We then find

W = (nw?/ALCe?*)(e?u® — dep/3 + 8/15).

(35)

The quality factor @ can now be calculated in a way
analogous to that in the preceding section. By using (23) we
find

4LC(L/C)*?
Qr 55— 73y
*u?(1 — 4/3epu + 8/15¢*u?)
When comparing (27) and (30) with (36) it is seen that the
quality factor of a circular resonator is approximately equal

to that of a stretched open-end resonator. This is in agree-
ment with results, reported in [7].

(36)

POwWER RADIATION FROM A HAIRPIN RESONATOR

The last configuration we investigate is the “hairpin”
resonator, drawn in Fig. 3. We assume that s < g, so that we
may represent the current density j(x,y) by

Ji(x.y) = cos (nx/2a)o(y) — (y —s)}, O0<-x<a
jiley) =0, elsewhere

Jalxy)=96(x), O<y<s

Jaxy) =0, elsewhere. (37)
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d

¥

Fig. 3. Cross-sectional view of the hairpin microstrip resonator.

The Fourier transforms j3(x,8) and j;(,f) are now found to
be

, ) 2ioa + 7 exp (—ina)

7 _ 2
J1(e.p) = —(iBsa/2n?) 2 — dala?

J3(p) =s/4n’,  Ps <L (38)

The calculation of the supplied power W is now straight-
forward. We find

W = (w?s?/e?) j : (A+ B+ D)dz (39)
where

_ 22 = 22(LC)"? sin {nz/2(LC)"?*} + LC

A 321(LC — 22)?
C{(1 = 2P (ep — 22) + 4(1 — 22)(ep — 1)222
+ (8/e)en — 1 || (1 — 22)41222)

B= z(LC)'? sin {nz/2(LC)'?} — 2*

16n(LC — 2)
A== 22 + 41 — z*)(ep — 1)?
+ (8/e)ep — 1)°(1 — 22)'? |w |}
D = (1am){e — 12(1 — ) + e — 1P(1 — 22 o
+ (1 — z%)(=5 + z* + 8zu)/8}.
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We note that L and C are now the specific inductance and
specific capacitance, respectively, for the mode of propaga-
tion with odd symmetry. It appears that the term {3 D dz is
several times larger than the term (§ (4 + B)dz. Using
W = (w*s?/¢?) [§ D dz we obtain the approximate relation

W x (w*s?/4ne?{4/15 + (2/3)(en — 1)en
+ (m/4e)en — 1) ||} (40)

The quality factor is again given by (30) and hence, in view
of (40), we obtain

0 ~ (r2e*/w*s*)(L/C)'?
{4/15 + (2/3)(en — D)ep + (m/de)ep — 1)°}71 (41)

Contrary to the preceding cases, where, in the long-wave-
length limit, Q was proportional to w2, in this example Q is
proportional to w~*. Hence, in the long-wavelength limit,
the hairpin resonator is expected to exhibit particularly low
radiation losses. The gain in Q may, however, be smaller
than expected from (41), due to ohmic losses.
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